正文内容 评论(0

华人打造二次元老婆生成器 网友:我的生活完整了
2021-06-20 16:47:23  出处:量子位  作者:杨净 编辑:万南     评论(0)点击可以复制本篇文章的标题和链接

当你的女朋友变身二次元,是什么样子?

小声说:没有女朋友。

搞错了,再来!

你下一个二次元老婆,可能是真人生成的!

即便是容嬷嬷本嬷,也能瞬间变温婉~还有辣个清秀的尔康,也瞬间变身短发萌妹。

只需一张照片、甚至视频就可以生成二次元老婆。

不管是萝莉风、御姐风、甚至女王风,统统都可以!

华人打造二次元老婆生成器 网友:我的生活完整了

对此有网友评论道:我的生活完整了。

如何实现?

这样一个生成器,叫做GANs N’ Roses,以下就简称GNR。

嗯?跟Guns N’ Roses (枪炮玫瑰)有什么关系。

按照论文标题所言,要比以往的图像转换技术更稳健、更可控,以及更多样。

GNR,由一个编码器和解码器组成。

编码器将图像分解为内容代码c和风格代码s,解码器接收一个内容码和一个样式码,产生相应的图像。

运行时,把图像传给编码器,保留产生的内容代码,获得一些其他相关的风格代码,然后把这对代码传给解码器。

那具体什么才是内容、以及风格?GNR的关键思路,是将内容定义为事物的位置,风格定义为为它们的样子。

就像这样。即使是同一种风格,也有不同的演绎。

华人打造二次元老婆生成器 网友:我的生活完整了

对于一个特定的风格码,包括眼睛、下巴、鼻子、头发颜色等细节,都有很强的一致性。

但就像头部倾斜度、脸部形状、发型等细节,则是由内容码控制的。

损失函数总共有三类:风格一致性损失、循环一致性损失、多样性判别器和对抗损失。

与其他SOTA框架对比,GNR在多样性、图像质量等多个指标上都有明显的改进。

直接放图来比较,则更为明显。

最后,研究人员发现,在没有额外训练的情况下,GNR对于视频之间的转换也同样适合。

目前,GNR已经在GitHub开源,并上线了Demo试玩链接。

我试了试,似乎目前只有一种风格。

但依然挡不住网友直呼:So cool!

团队成员

团队成员均来自美国伊利诺伊大学厄巴纳-香槟分校。

一作华人Min Jin Chong,本科从美国伊利诺伊大学毕业后,继续留校读博,此前曾在字节实习3个月。

另一位作者、他的导师David Forsyth是知名CV大牛,曾与Jean Ponce 合著的《Computer Vision:A Modern Approach》,堪称计算机视觉经典教材。

好了,感兴趣的旁友,可戳下方链接哦~

试玩链接:https://gradio.app/g/AK391/GANsNRoses

责任编辑:万南文章纠错

  • 支持打赏
  • 支持0

  • 反对

  • 打赏

文章价值打分

当前文章打分0 分,共有0人打分
  • 分享好友:
  • |
本文收录在
#二次元

  • 热门文章
  • 换一波

  • 好物推荐
  • 换一波

  • 关注我们

  • 微博

    微博:快科技官方

    快科技官方微博
  • 今日头条

    今日头条:快科技

    带来硬件软件、手机数码最快资讯!
  • 抖音

    抖音:kkjcn

    科技快讯、手机开箱、产品体验、应用推荐...