正文内容 评论(0

科大讯飞刷新自动驾驶Cityscapes评测世界纪录
2018-10-22 17:55:15  出处:快科技 作者:随心 编辑:随心     评论(0)点击可以复制本篇文章的标题和链接

近日,在国际自动驾驶领域权威评测任务Cityscapes中,科大讯飞团队刷新了全部两项子任务的世界纪录。

据了解,Cityscapes评测任务是由奔驰主推,提供在驾驶领域进行效果和性能测试的图像分割数据集。该评测任务关注真实场景下的道路环境理解,用于评估参与测试的算法在城区场景语义理解方面的性能。

相比其他自动驾驶领域的测试数据集,Cityscapes任务难度更高,更加贴近自动驾驶等当下热门需求,近年来的热度也不断攀升。截至目前,评测已经吸引了包括谷歌、英伟达、三星、腾讯和香港中文大学等近百家国内外优秀创新企业和顶尖学术机构的参与。

在Cityscapes任务所应用的数据集中,包含了5000张精细标注的图像和20000张粗略标注的图像,这些图像包含50个城市的不同场景、不同背景、不同街景,以及30类涵盖地面、建筑、交通标志、自然、天空、人和车辆等的物体标注。

科大讯飞刷新自动驾驶Cityscapes评测世界纪录
左-原图,中-语义分割结果图,右-实例分割结果图

Cityscapes评测集有两项任务:像素级(Pixel-level)图像场景分割(以下简称语义分割)与实例级(Instance-level)图像场景分割(以下简称实例分割)。

去年10月,科大讯飞曾参与前者并刷新记录;此次科大讯飞同时参与全部两项任务的测评,再次刷新了语义分割任务的世界纪录,同时刷新了实例分割任务的世界纪录。

科大讯飞刷新自动驾驶Cityscapes评测世界纪录
语义分割成绩

科大讯飞刷新自动驾驶Cityscapes评测世界纪录
实例分割成绩

科大讯飞表示,针对Cityscapes数据集“尺寸变化大、相互遮挡多、目标辨识难”的特点,讯飞团队基于图像检测和分割基础算法的多年研究积累,引入了多项创新性技术。

在设计语义分割模型方案时,基于Encoder-Decoder框架,融合注意力机制、可变形卷积操作等思想,创新性地增加了一组尺度自适应矫正网络,使得模型能够充分地利用各层级特征和上下文信息来有效地应对场景中类别尺寸的变化,同时通过目标函数的设计对图像各像素点进行加权编码及梯度规整,提升难以辨识的“难例”像素点尤其是各类别边缘相交区域像素点的预测准确度,进一步提升整幅图像场景中每一个像素点的预测准确性。

在实例分割方案的设计上,讯飞团队将级联式检测方案迁移到实例分割任务的定位模块中,并针对驾驶场景下的一些特定的空间位置共生关系(比如:汽车出现在道路上,骑车者出现在自行车或摩托车上)引入一种空间注意力机制,逐步提升模型的定位性能,同时在分割模块的设计上还成功借鉴语义分割模型成熟方案,精细化每个实例对象的分割结果,最终达到更好的实例分割性能。

科大讯飞刷新自动驾驶Cityscapes评测世界纪录

【本文结束】如需转载请务必注明出处:快科技

责任编辑:文章纠错

  • 支持打赏
  • 支持0

  • 反对

  • 打赏

文章价值打分

当前文章打分0 分,共有0人打分
  • 分享好友:
  • |

  • 热门文章
  • 换一波

  • 好物推荐
  • 换一波

  • 关注我们

  • 微博

    微博:快科技官方

    快科技官方微博
  • 今日头条

    今日头条:快科技

    带来硬件软件、手机数码最快资讯!
  • 抖音

    抖音:kkjcn

    科技快讯、手机开箱、产品体验、应用推荐...