正文内容 评论(0

天使与魔鬼4:谈谈民航飞机庞大的发动机
2015-04-21 05:43:00  出处:中关村在线   编辑:快科技     评论(0)点击可以复制本篇文章的标题和链接

品牌:佳能 数码相机1主流客机用什么发动机?

飞机的最核心部件,当属它的发动机。发动机就相当于飞机的心脏,发动机停了,飞机也就不能继续飞行了。发动机提供了飞机的动力和能源,也保障了飞机能够顺利的起飞、降落和航行。目前还在使用的飞机的发动机主要分为:活塞式、螺旋桨式、涡轮喷气式、涡轮螺旋桨式、涡轮轴式、涡轮风扇式和桨扇式几种类型。这些发动机被普遍应用在各种类型飞机上,比如战斗机、运输机、民航客机等等。接下来,我们就来跟大家说道说道民航客机的发动机。

注:本文只是科普民航客机常用的发动机类型和其简单的性能,并不涉及发动机结构、原理等等方面的深入分析,此类型内容大家可以自行百度,介绍的文章数量非常丰富。

天使与魔鬼4:谈谈民航飞机庞大的发动机
天使与魔鬼4:谈谈民航飞机庞大的发动机

目前主流客机都用什么发动机?

既然谈到了主流客机,那么目前各家航空公司和各大机场出镜率最高的肯定当属波音和空中客车生产的飞机了。接着,我们就来给大家介绍一下波音和空中客车主流型号的飞机都采用了什么样的发动机。

天使与魔鬼4:谈谈民航飞机庞大的发动机
波音主流客机的发动机配备表

天使与魔鬼4:谈谈民航飞机庞大的发动机
空中客车主流客机的发动机配备表

从大C整理表格来看,空中客车和波音公司生产的主流客机,无非就是采用两个发动机或者四个发动机的配备,发动机的制造商主要是通用电气、罗尔斯·罗伊斯、劳斯莱斯、普拉特·惠特尼和CFM等这几家,这些生产商也是国际知名的发动机生产商,涉及飞机、汽车和很多军事设备的发动机制造。

天使与魔鬼4:谈谈民航飞机庞大的发动机
目前绝大部分民航飞机发动机都是涡轮风扇式发动机

在最开始给大家罗列了很多种飞机发动机的类型,但是在民航客机的范畴内,主要使用的就是涡轮发动机,其中的涡轮风扇式发动机的使用率几乎占到了全部。由于涡扇发动机最适合飞行速度400至1000公里每小时时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。涡扇发动机优点是推力大、推进效率高、噪音低、燃油消耗率低并且飞机航程远。它的缺点是风扇直径大、迎风面积大,因而阻力大,发动机结构复杂,设计难度大。

延伸阅读

天使与魔鬼系列一:解密飞机的黑匣子

天使与魔鬼系列2:天气影响飞机有多大

天使与魔鬼系列3:坐飞机有这么多学问?

新技能GET√在机场一眼识破飞机的型号

品牌:佳能 数码相机2常见客机的发动机性能

我们常见的客机中,除了麦道等厂商之外,波音和空中客车两家厂商制造的客机的发动机基本上都悬挂在主机翼的下方,只是分为两个发动机、四个发动机或者六个发动机的区别,当然有些特殊型号拥有三个发动机设计,发动机悬挂的位置也不同。

天使与魔鬼4:谈谈民航飞机庞大的发动机
大部分主流客机的发动机悬挂在主机翼的下方

飞机发动机的数量,主要是根据飞机的整体大小、载重量、计划飞行距离等因素来设计的。发动机是飞机的主要动力来源,除了提供推力以外,还为飞机提供电源,气源以及饮用水、液压、空调的增压。发动机的体积和重量都很大,体积与一辆小轿车相当。接下来,我们看看常用的几款发动机的性能如何:

天使与魔鬼4:谈谈民航飞机庞大的发动机
常见发动机的性能表

从这张表格中,我们可以看到目前正在应用的主流的民航客机发动机,全都是涡轮风扇式发动机。它们之间的区别除了制造的厂商不同之外,还分为双转子轴和三转子轴的区别,而它们提供的推力也有较大的区别。小推力的发动机主要用于短途飞行的小型客机,大推力的发动机主要用于中长途飞行的大、中型客机。至于飞机的推力究竟有多大,可以这么形容:例如18000-22000磅推力的发动机,推力约为8吨左右,发动机可以在一秒内将一间几十平米的房子抽成真空。而目前发动机的最大推力超过50吨,大家可以自己想象威力。

由于涡轮风扇式发动机运转时会在前方进气、后方排气,后方排气的温度可以到达500-600度之高。发动机的噪音很大,可达到100分贝以上,近处属于让人无法忍受的级别,地面发动机运转时,需要保护听力。

涡轮风扇式发动机的运行原理和结构请大家自行百度搜索,有非常多相关介绍,这里不再重复介绍了。涵道比的概念,我们将在本文后面为大家单独介绍。

品牌:佳能 数码相机3怎样会破坏发动机运转?

如果说让发动机停止运转,一般也就是三种情况:燃料耗尽、发动机机械故障、发动机损毁。

燃料耗尽

我们首先聊聊第一种情况,燃料耗尽。一般在所有民航航班起飞前,地面工作人员都会对飞机进行详细全面的检查,并且将航空燃油加满,也就是飞机起飞的时候都会是燃料满载的情况。所以一次正常的航线飞行,因为燃料耗尽造成的飞机发动机停转基本上是不可能发生的。

天使与魔鬼4:谈谈民航飞机庞大的发动机
飞机油箱内部

还有一种情况,就是在航行终点的机场因为天气因素或者其它因素造成无法降落,飞机就不得不在天上盘旋,这种情况在雷暴天气时经常会发生,如果说飞机燃料快要耗尽,一定会寻找合适的机场进行备降。而燃料耗尽造成发动机停转的最大可能性就是飞机飞行途中油箱大量快速的漏油,这样飞机就只能够选择迫降了。不过这种情况在民航客机的飞行史中实在是太少了,可以忽略不计。

发动机机械故障

天使与魔鬼4:谈谈民航飞机庞大的发动机
飞机发动机发生机械故障造成迫降

目前来看,常见的发动机机械故障主要出现在点火系统、汽化器、滑油系统等部位,如果不掌握其原理,就难以正确判断故障类别,就不能正确进行处置。即使是国际知名的飞机发动机生产厂商制造的顶级发动机,也不能够保证发动机完全的安全运转,所以飞行员在飞行的训练中,都会训练一些常见发动机机械故障时,如何保证飞机能够安全的着陆。只要不是因为机械故障造成发动机破损或者机体破损,都不会引发过于严重的事故或者空难。

发动机损毁

天使与魔鬼4:谈谈民航飞机庞大的发动机
鸟对飞机的飞行安全造成很大的威胁

飞机的发动机损毁,发生的情况非常稀少,一般来说是遭受装机之后引起发动机结构解体或者爆炸,从而威胁到飞行安全。在罪魁祸首方面,导弹和鸟类的威胁是同等的。早期的民航客机,有很大概率的事故原因是鸟类在飞行过程中被吸入飞机的发动机中,造成飞机发动机故障或解体。即便是现在,鸟类对飞机发动机的威胁也是非常大的,另外鸟类与飞机相撞还会造成飞机玻璃或者机体的破损,同样影响了飞机的飞行安全。

客机的一个发动机失灵了怎么办?

前不久南航珠海-北京CZ3739航班起飞后发动机故障,后安全备降白云机场,这个就是一个发动机损坏还成功降落的案例。当时出事的飞机是空客A330,理论上单一发动机的飞行时间为三小时,也就是起飞后即便是发动机损坏,也是可以安全飞到北京的。但是国际民航管理机构要求任何情况下,单发都要在最近的机场备降。每个双发动机的飞机,如果一个发动机坏掉,单靠另一个发动机飞行都可以坚持飞行2-3小时时间,具体时间因机型而异。但是诸如空客A380这种四发动机飞机,如果坏掉一个发动机,基本上不会有太多的飞行能力技术的限制。

一台发动机故障的状况,安全仍然在机组的能力控制范围之内,训练有素的机组都拥有应对能力。而单发动机飞行,也是所有机组训练的基本项目,对于机组来说甚至比应对一些极端天气条件(比如说风切变、晴空颠簸)更加娴熟。

所以说,只要失灵的发动机不会发生爆炸等损坏飞机完整性的状况,就不会有太多的飞行安全问题。遇到这种情况发生,要相信机组人员,听从机组人员的指挥,自己盲目的慌乱一定会威胁到自己和其他人的生命安全。

品牌:佳能 数码相机4民航与军用发动机差在哪?

客机和军用飞机发动机哪个更贵?

如果说只是泛泛的比较,客机和军用飞机的发动机不一定哪个更加昂贵,比如说空客A380的发动机比歼七战斗机的发动机更贵,但是比F35的发动机便宜很多。一般来说,使用同样核心机生产的发动机,军用飞机要比客机的发动机贵很多,毕竟军用飞机对于发动机的要求更多,研发和配备的能力也有很大的区别。比如说波音747和F15战斗机的发动机采用了同一种核心机,但是F15的发动机需要大范围的推力变化和其它方面的苛刻要求,所以价格会昂贵很多。

客机与军用飞机的发动机差在哪?

什么是涵道比:

在解释两种发动机之间区别之前,我们首先来学习一个概念,就是之前出现过的涵道比。涵道比是涡扇发动机外进气道与进气道空气流量的比值。涵道比高的发动机,大部分动力来自由风扇加速的外进气道空气。大涵道比发动机在次音速时有非常好的能效,通常用于客机、运输机和战略轰炸机。涵道比低的发动机,大部分动力来自驱动核心机的内进气道尾气这种发动机通常采用混合碰嘴,即内进气道尾气在于外进气道气流混合后再行排出。小涵道比发动机可以用于超音速飞行,通常用于战斗机。

天使与魔鬼4:谈谈民航飞机庞大的发动机
涵道和涵道比的示例

了解了涵道比的概念,我们正式来探讨。客机与军用飞机的发动机,最大的差别就是涵道比,还有就是有没有设计加力燃烧室。一般来说,军用飞机诸如战斗机都是小涵道比发动机设计,但是民航客机全都是大涵道比发动机设计。民航客机的发动机涵道比可以达到40:1到50:1,而且80%的动力来源于外涵道;军用飞机发动机的涵道比只有10:1,动力主要来自于内涵道。客机没有加力燃烧室,工作平缓稳定;军机有加力燃烧室,油耗大,能提供超强动力以适应空战。

为什么战斗机的发动机能喷火?

一般我们在看军事演习的时候,可以看到战斗机的发动机会喷射火焰,但是民航客机的发动机并不会喷射火焰,这是因为军用飞机都会在发动机中设计一个加力燃烧室,但是民航客机的发动机并没有这个设计。加力燃烧室的原理是在发动机喷出的气流中注射入燃料,由于气流温度很高,燃料即时燃烧,膨涨而产生额外推力。

天使与魔鬼4:谈谈民航飞机庞大的发动机
战斗机发动机可以喷火

有了加力燃烧室的加持,一般来说军用飞机的推力可以瞬间提升到之前的1.5倍,这样在实行军事用途的时候可以瞬间让飞机加速起飞或者加速前行,比如在航母上起飞、突破音障达到超音速飞行等等。由于一般气体通过加力燃烧室后的含氧量非常低,所以加力燃烧室的效率很低,而且耗油量非常大。飞机所携带的燃料只足够加力燃烧室使用数分钟而已,因此加力燃烧室一般只会在需要最高推力时使用很短的时间。由于成本高、作用时间短,所以民航飞机的发动机几乎不安装加力燃烧室,当然也有安装的案例,比如协和号及Tu-144超音速客机。

写在最后

本文为大家简单的科普了部分民航客机发动机的知识,希望大家看完之后能够对民航客机的发动机有一个初步的了解,至少能够知道几个飞机发动机的制造厂商,常见机型用的什么类型的发动机等等。这一篇文章其实只是一个开端,我们后续还会继续推出关于客机发动机的文章,届时会为大家带来关于发动机的更深入的解析和介绍,敬请期待。

延伸阅读

天使与魔鬼系列一:解密飞机的黑匣子

天使与魔鬼系列2:天气影响飞机有多大

天使与魔鬼系列3:坐飞机有这么多学问?

新技能GET√在机场一眼识破飞机的型号

品牌:佳能 数码相机5附:飞机发动机发展史

活塞式发动机时期

早期液冷发动机居主导地位。19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。

1903年,美国莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95kW的功率,重量却有81kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。

在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架是法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的"斯佩德"战斗机。这种发动机的功率已达130~220kW,推重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m。

当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。

在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。

从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普·惠公司先后发展出单排的"旋风"和"飓风"以及"黄蜂"和"大黄蜂"发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研制成功,发动机功率已提高到600~820kW。此时,螺旋桨战斗机的飞行速度已超过500km/h,飞行高度达10000m。

在第二次世纪大战期间,气冷星型发动机继续向大功率方向发展。其中比较著名的有普·惠公司的双排"双黄蜂"((R-2800)和四排"巨黄蜂"(R-4360)。前者在1939年7月1日定型,开始时功率为1230kW,共发展出5个系列几十个改型,最后功率达到2088kW,用于大量的军民用飞机和直升机。单单为P-47战斗机就生产了24000台R-2800发动机,其中P-47J的最大速度达805km/h。虽然有争议,但据说这是第二次世界大战中飞得最快的战斗机。这种发动机在航空史上占有特殊的地位。在航空博物馆或航空展览会上,R-2800总是放置在中央位置。甚至有的航空史书上说,如果没有R-2800发动机,在第二次世界大战中盟国的取胜要困难得多。后者有四排28个汽缸,排量为71.5L,功率为2200~3000kW,是世界上功率最大的活塞式发动机,用于一些大型轰炸机和运输机。1941年,围绕六台R-4360发动机设计的B-36轰炸机是少数推进式飞机之一,但未投入使用。

莱特公司的R-2600和R-3350发动机也是很有名的双排气冷星型发动机。前者在1939推出,功率为1120kW,用于第一架载买票旅客飞越大西洋的波音公司"快帆"314型四发水上飞机以及一些较小的鱼雷机、轰炸机和攻击机。后者在1941年投入使用,开始时功率为2088kW,主要用于著名的B-29"空中堡垒"战略轰炸机。R-3350在战后发展出一种重要改型--涡轮组合发动机。发动机的排气驱动三个沿周向均布的废气涡轮,每个涡轮在最大状态下可发出150kW的功率。这样,R-3350的功率提高到2535kW,耗油率低达0.23kg/(kW·h)。1946年9月,装两台R-3350涡轮组合发动机的P2V1"海王星"飞机创造了18090km的空中不加油的飞行距离世界纪录。液冷发动机与气冷发动机之间的竞争在第二次世界大战中仍在继续。液冷发动机虽然有许多缺点,但它的迎风面积小,对高速战斗机特别有利。而且,战斗机的飞行高度高,受地面火力的威胁小,液冷发动机易损的弱点不突出。所以,它在许多战斗机上得到应用。例如,美国在这次大战中生产量最大的5种战斗机中有4种采用液冷发动机。其中,值得一提的是英国罗-罗公司的梅林发动机。它在1935年11月在"飓风"战斗机上首次飞行时,功率达到708kW;1936年在"喷火"战斗机上飞行时,功率提高到783kW。

这两种飞机都是第二次世界大战期间有名的战斗机,速度分别达到624km/h和750km/h。梅林发动机的功率在战争末期达到1238kW,甚至创造过1491kW的纪录。美国派克公司按专利生产了梅林发动机,用于改装P-51"野马"战斗机,使一种平常的飞机变成战时最优秀的战斗机。"野马"战斗机采用一种不常见的五叶螺旋桨,安装梅林发动机后,最大速度达到760km/h,飞行高度为15000m。除具有当时最快的速度外,"野马"战斗机的另一个突出的优点是有惊人的远航能力,它可以把盟军的轰炸机一直护送到柏林。到战争结束时,"野马"战斗机在空战中共击落敌机4950架,居欧洲战场的首位。而在远东和太平洋战场上,则是由于装备了气冷发动机的F6F"地狱猫"战斗机的参战,才结束了日本"零"式战斗机的霸主地位。航空史学界把"野马"飞机看作螺旋桨战斗机的顶峰之作。

在第二次世界大战开始之后和战后的最主要的技术进展有直接注油、涡轮组合发动机和低压点火。

在两次世界大战的推动下,发动机的性能提高很快,单机功率从不到10kW增加到2500kW左右,功率重量比从0.11kW/daN提高到1.5kW/daN左右,升功率从每升排量几千瓦增加到四五十千瓦,耗油率从约0.50kg/(kW·h)降低到0.23~0.27kg/(kW·h)。翻修寿命从几十小时延长到2000~3000h。到第二次世界大战结束时,活塞式发动机已经发展得相当成熟,以它为动力的螺旋桨飞机的飞行速度从16km/h提高到近800km/h,飞行高度达到15000m。可以说,活塞式发动机已经达到其发展的顶峰。

喷气时代的活塞式发动机

在第二次世界大战结束后,由于涡轮喷气发动机的发明而开创了喷气时代,活塞式发动机逐步退出主要航空领域,但功率小于370kW的水平对缸活塞式发动机发动机仍广泛应用在轻型低速飞机和直升机上,如行政机、农林机、勘探机、体育运动机、私人飞机和各种无人机,旋转活塞发动机在无人机上崭露头角,而且美国NASA还正在发展用航空煤油的新型二冲程柴油机供下一代小型通用飞机使用。

美国NASA已经实施了一项通用航空推进计划,为未来安全舒适、操作简便和价格低廉的通用轻型飞机提供动力技术。这种轻型飞机大致是4~6座的,飞行速度在365km/h左右。一个方案是用涡轮风扇发动机,用它的飞机稍大,有6个座位,速度偏高。另一个方案是用狄塞尔循环活塞式发动机,用它的飞机有4个座位,速度偏低。对发动机的要求为:功率为150kW;耗油率0.22kg/(kW·h);满足未来的排放要求;制造和维修成本降低一半。到2000年,该计划已经进行了500h以上的发动机地面试验,功率达到130kW,耗油率0.23kg/(kW·h)。

燃气涡轮发动机时期

第二个时期从第二次世界大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。在技术发展的推动下(见表1),涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、桨扇发动机和涡轮轴发动机在不同时期在不同的飞行领域内发挥着各自的作用,使航空器性能跨上一个又一个新的台阶。

涡喷/涡扇发动机

英国的惠特尔和德国的奥海因分别在1937年7月14日和1937年9月研制成功离心式涡轮喷气发动机WU和HeS3B。前者推力为530daN,但1941年5月15日首次试飞的格罗斯特公司E28/39飞机装的是其改进型W1B,推力为540daN,推重比2.20。后者推力为490daN,推重比1.38,于1939年8月27日率先装在亨克尔公司的He-178飞机上试飞成功。这是世界上第一架试飞成功的喷气式飞机,开创了喷气推进新时代和航空事业的新纪元。

世界上第一台实用的涡轮喷气发动机是德国的尤莫-004,1940年10月开始台架试车,1941年12月推力达到980daN,1942年7月18日装在梅塞施米特Me-262飞机上试飞成功。自1944年9月至1945年5月,Me-262共击落盟军飞机613架,自己损失200架(包括非战斗损失)。英国的第一种实用涡轮喷气发动机是1943年4月罗·罗公司推出的威兰德,推力为755daN,推重比2.0。该发动机当年投入生产后即装备"流星"战斗机,于1944年5月交给英国空军使用。该机曾在英吉利海峡上空成功地拦截了德国的V-1导弹。

战后,美、苏、法通过买专利,或借助从德国取得的资料和人员,陆续发展了本国第一代涡轮喷气发动机。其中,美国通用电气公司的J47轴流式涡喷发动机和苏联克里莫夫设计局的RD-45离心式涡喷发动机的推力都在2650daN左右,推重比为2~3,它们分别在1949年和1948年装在F-86和米格-15战斗机上服役。这两种飞机在朝鲜战争期间展开了你死我活的空战。20世纪50年代初,加力燃烧室的采用使发动机在短时间内能够大幅度提高推力,为飞机突破声障提供足够的推力。典型的发动机有美国的J57和苏联的RD-9B,它们的加力推力分别为7000daN和3250daN,推重比各为3.5和4.5。它们分别装在超声速的单发F-100和双发米格-19战斗机上。

在50年代末和60年代初,各国研制了适合M2以上飞机的一批涡喷发动机,如J79、J75、埃汶、奥林帕斯、阿塔9C、R-11和R-13,推重比已达5~6。在60年代中期还发展出用于M3一级飞机的J58和R-31涡喷发动机。到70年代初,用于"协和"超声速客机的奥林帕斯593涡喷发动机定型,最大推力达到17000daN。从此再没有重要的涡喷发动机问世。

涡扇发动机的发展源于第二次世界大战。世界上第一台运转的涡轮风扇发动机是德国戴姆勒-奔驰研制的DB670(或109-007),于1943年4月在实验台上达到840千克推力,但因技术困难及战争原因没能获得进一步发展。世界上第一种批量生产的涡扇发动机是1959年定型的英国康维,推力为5730daN,用于VC-10、DC-8和波音707客机。涵道比有0.3和0.6两种,耗油率比同时期的涡喷发动机低10%~20%。1960年,美国在JT3C涡喷发动机的基础上改型研制成功JT3D涡扇发动机,推力超过7700daN,涵道比1.4,用于波音707和DC-8客机以及军用运输机。

以后,涡扇发动机向低涵道比的军用加力发动机和高涵道比的民用发动机的两个方向发展。在低涵道比军用加力涡扇发动机方面,20世纪60年代,英、美在民用涡扇发动机的基础上研制出斯贝-MK202和TF30,分别用于英国购买的"鬼怪"F-4M/K战斗机和美国的F111(后又用于F-14战斗机)。它们的推重比与同时期的涡喷发动机差不多,但中间耗油率低,使飞机航程大大增加。在70~80年代,各国研制出推重比8一级的涡扇发动机,如美国的F!00、F404、F110,西欧三国的RB199,前苏联的RD-33和AL-31F。它们装备在一线的第三代战斗机,如F-15、F-16、F-18、"狂风"、米格-29和苏-27。推重比10一级的涡扇发动机已研制成功,即将投入服役。它们包括美国的F-22/F119、西欧的EFA2000/EJ200和法国的"阵风"/M88。其中,F-22/F119具有第四代战斗机代表性特征--超声速巡航、短距起落、超机动性和隐身能力。超声速垂直起飞短距着陆的JSF动力装置F136正在研制之中,预计将于2010~2012年投入服役。

自20世纪70年代第一代推力在20000daN以上的高涵道比(4~6)涡扇发动机投入使用以来,开创了大型宽体客机的新时代。后来,又发展出推力小于20000daN的不同推力级的高涵道比涡扇发动机,广泛用于各种干线和支线客机。10000~15000daN推力级的CFM56系列已生产13000多台,并创造了机上寿命超过30000h的记录。民用涡扇发动机依然投入使用以来,已使巡航耗油率降低一半,噪声下降20dB,CO、UHC、NOX分别减少70%、90%、45%。90年代中期装备波音777投入使用的第二代高涵道比(6~9)涡扇发动机的推力超过35000daN。其中,通用电气公司GE90-115B在2003年2月创造了56900daN的发动机推力世界纪录。普·惠公司正在研制新一代涡扇发动机PW8000,这种齿轮传动涡扇发动机,推力为11000~16000daN,涵道比11,耗油率下降9%。

涡桨/涡轴发动机

第一台涡轮螺旋桨发动机为匈牙利于1937年设计、1940年试运转的JendrassikCs-1。该机原计划用于本国VargaRMI-1X/H型双引擎侦察/轰炸机但该机项目被取消。1942年,英国开始研制本国第一台涡桨发动机罗尔斯-罗伊斯RB.50Trent。该机于1944年6月首次运转,经过633小时试车后于1945年9月20日安装在一台格罗斯特“流星”战斗机上,并做了298小时飞行实验。以后,英国、美国和前苏联陆续研制出多种涡桨发动机,如达特、T56、AI-20和AI-24。这些涡桨发动机的耗油率低,起飞推力大,装备了一些重要的运输机和轰炸机。美国在1956年服役的涡桨发动机T56/501,装于C-130运输机、P3-C侦察机和E-2C预警机。它的功率范围为2580~4414kW,有多个军民用系列,已生产了17000多台,出口到50多个国家和地区,是世界上生产数量最多的涡桨发动机之一,至今还在生产。前苏联的HK-12M的最达功率达11000kW,用于图-95"熊"式轰炸机、安-22军用运输机和图-114民用运输机。终因螺旋桨在吸收功率、尺寸和飞行速度方面的限制,在大型飞机上涡轮螺旋桨发动机逐步被涡轮风扇发动机所取代,但在中小型运输机和通用飞机上仍有一席之地。其中加拿大普·惠公司的PT6A发动机是典型代表,40年来,这个功率范围为350~1100kW的发动机系列已发展出30多个改型,用于144个国家的近百种飞机,共生产了30000多台。美国在90年代在T56和T406的基础上研制出新一代高速支线飞机用的AE2100是当前最先进的涡桨发动机,功率范围为2983~5966kW,其起飞耗油率特低,为0.249kg/(kW·h)。

在20世纪80年代后期,掀起了一阵性能上介于涡桨发动机和涡扇发动机之间的桨扇发动机热。一些著名的发动机公司都在不同程度上进行了预计和试验,其中通用电气公司的无涵道风扇(UDF)GE36曾进行了飞行试验。

从1950年法国透博梅卡公司研制出206kW的阿都斯特Ⅰ型涡轴发动机并装备美国的S52-5直升机上首飞成功以后,涡轮轴发动机在直升机领域逐步取代活塞式发动机而成为最主要的动力形式。半个世纪以来,涡轴发动机已成功低发展出四代,功重比已从2kW/daN提高到6.8~7.1kW/daN。第三代涡轴发动机是20世纪70年代设计,80年代投产的产品。主要代表机型有马基拉、T700-GE-701A和TV3-117VM,装备AS322"超美洲豹"、UH-60A、AH-64A、米-24和卡-52。第四代涡轴发动机是20世纪80年代末90年代初开始研制的新一代发动机,代表机型有英、法联合研制的RTM322、美国的T800-LHT-800、德法英联合研制的MTR390和俄罗斯的TVD1500,用于NH-90、EH-101、WAH-64、RAH-66"科曼奇"、PAH-2/HAP/HAC"虎"和卡-52。世界上最大的涡轮轴发动机是乌克兰的D-136,起飞功率为7500kW,装两台发动机的米-26直升机可运载20t的货物。以T406涡轮轴发动机为动力的倾转旋翼机V-22突破常规旋翼机400km/h的飞行速度上限,一下子提高到638km/h。

航空燃气涡轮发动机问世以后的60年来在技术上取得的重大进步可用下列数字表明:

服役的战斗机发动机推重比从2提高到7~9,已经定型并即将投入使用的达9~10。民用大涵道比涡扇发动机的最大推力已超过50000daN,巡航耗油率从50年代涡喷发动机1.0kg/(daN·h)下降到0.55kg/(daN·h),噪声已下降20dB,CO、UHC和NOx分别下降70%、90%和45%。

服役的直升机用涡轴发动机的功重比从2kW/daN提高到4.6~6.1kW/daN,已经定型并即将投入使用的达6.8~7.1kW/daN。

发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2~0.4/1000发动机飞行小时,民用发动机为0.002~0.02/1000发动机飞行小时。战斗机发动机整机定型要求通过4300~6000TAC循环试验,相当于平时使用10多年,热端零件寿命达到2000h;民用发动机热端部件寿命,为7000~10000h,整机的机上寿命达到15000~20000h,也相当使用10年左右。

总之,航空涡轮发动机已经发展得相当成熟,为各种航空器的发展作出了重要贡献,其中包M3一级的战斗/侦察机,具有超声速巡航、隐身、短距起落和超机动能力的战斗机、亚声速垂直起落战斗机、满足180min双发干线客机延长航程(ETOPS)要求的宽体客机、有效载重大20t的巨型直升机和速度超过600km/h的倾转旋翼机。同时,还为各种航空改型轻型地面燃气轮机打下基础。

责任编辑:

  • 支持打赏
  • 支持0

  • 反对

  • 打赏

文章价值打分

当前文章打分0 分,共有0人打分
  • 分享好友:
  • |
本文收录在
#数码

  • 热门文章
  • 换一波

  • 好物推荐
  • 换一波

  • 关注我们

  • 微博

    微博:快科技官方

    快科技官方微博
  • 今日头条

    今日头条:快科技

    带来硬件软件、手机数码最快资讯!
  • 抖音

    抖音:kkjcn

    科技快讯、手机开箱、产品体验、应用推荐...